Existence and Regularity of Solutions for a Semilinear First-Order Equation on the Torus.
This paper is devoted to the existence and uniqueness of solutions for gradient systems of evolution which involve gradients taken with respect to time-variable inner products. The Gelfand triple considered in the setting of this paper is such that the embedding is only continuous.
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
This paper has two objectives. First, we prove the existence of solutions to the general advection-diffusion equation subject to a reasonably smooth initial condition. We investigate the behavior of the solution of these problems for large values of time. Secondly, a numerical scheme using the Sinc-Galerkin method is developed to approximate the solution of a simple model of turbulence, which is a special case of the advection-diffusion equation, known as Burgers' equation. The approximate solution...
We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation where is a family of linear operators from a Banach space into itself and . By we denote the space of linear operators from into itself. Furthermore, for and , we let be the Banach space of continuous functions from into and . Let be a strongly measurable and Bochner integrable operator on and for define for each . We prove that, under certain conditions,...
We consider the spatially inhomogeneous Bekker-Döring infinite-dimensional kinetic system describing the evolution of coagulating and fragmenting particles under the influence of convection and diffusion. The simultaneous consideration of opposite coagulating and fragmenting processes causes many additional difficulties in the investigation of spatially inhomogeneous problems, where the space variable changes differently for distinct particle sizes. To overcome these difficulties, we use a modified...
Despite their deficiencies, continuous second-order traffic flow models are still commonly used to derive discrete-time models that help traffic engineers to model and predict traffic oflow behaviour on highways. We brie fly overview the development of traffic flow theory based on continuous flow-density models of Lighthill-Whitham-Richards (LWR) type, that lead to the second-order model of Aw-Rascle. We will then concentrate on widely-adopted discrete approximation to the LWR model by Daganzo's...
In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial...