Extension of a result of Ladyženskaja and Uralceva concerning second-order parabolic equations of arbitrary order
Pour localiser la solution d’un système de diffusion-réaction, il suffit de construire une famille de convexes , invariante par rapport au champ de vecteurs associé à ce système; la solution est alors incluse dans à l’instant dès qu’elle est contenue dans à l’instant zéro. Les fonctions d’appui associées à de telles familles de convexes sont solutions d’un système différentiel, mais celui-ci peut également engendrer des familles non invariantes.
In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.
We study a general mathematical model linked with various physical models. Especially, we focus on those models established by King or Spencer-Davis-Voorhees related to thin films extending the lubrication model studied by Bernis-Friedman. According to the initial data, we prove that, either, blow up or global existence can be obtained.
Vengono considerate equazioni alle derivate parziali semilineari con caratteristiche multiple. Si studia in particolare la loro risolubilità locale e la buona positura del problema di Cauchy nell'ambito delle classi di Gevrey.