Displaying 161 – 180 of 681

Showing per page

Familles de convexes invariantes et équations de diffusion-réaction

Christine Reder (1982)

Annales de l'institut Fourier

Pour localiser la solution d’un système de diffusion-réaction, il suffit de construire une famille de convexes ( K t ) t 0 , invariante par rapport au champ de vecteurs associé à ce système; la solution est alors incluse dans K t à l’instant t dès qu’elle est contenue dans K 0 à l’instant zéro. Les fonctions d’appui associées à de telles familles de convexes sont solutions d’un système différentiel, mais celui-ci peut également engendrer des familles non invariantes.

Galerkin approximations for nonlinear evolution inclusions

Shouchuan Hu, Nikolaos S. Papageorgiou (1994)

Commentationes Mathematicae Universitatis Carolinae

In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.

Generalized lubrification models blow-up and global existence result.

J. Emile Rakotoson, J. Michel Rakotoson, Cédric Verbeke (2005)

RACSAM

We study a general mathematical model linked with various physical models. Especially, we focus on those models established by King or Spencer-Davis-Voorhees related to thin films extending the lubrication model studied by Bernis-Friedman. According to the initial data, we prove that, either, blow up or global existence can be obtained.

Currently displaying 161 – 180 of 681