Page 1

Displaying 1 – 3 of 3

Showing per page

Upper bounds for a class of energies containing a non-local term

Arkady Poliakovsky (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we construct upper bounds for families of functionals of the form E ε ( φ ) : = Ω ε | φ | 2 + 1 ε W ( φ ) d x + 1 ε N | H ¯ F ( φ ) | 2 d x where Δ H ¯ u = div { χ Ω u}. Particular cases of such functionals arise in Micromagnetics. We also use our technique to construct upper bounds for functionals that appear in a variational formulation of the method of vanishing viscosity for conservation laws.

Currently displaying 1 – 3 of 3

Page 1