Sur la convergence des schémas aux différences finies pour des équations elliptiques du quatrième ordre avec des solutions irrégulières. (Convergence of finite difference schemes for fourth order elliptic equations with irregular solutions).
Let D₀=x∈ ℝ²: 0<|x|<1 be the unit punctured disk. We consider the first eigenvalue λ₁(ρ ) of the problem Δ² u =λ ρ u in D₀ with Dirichlet boundary condition, where ρ is an arbitrary function that takes only two given values 0 < α < β and is subject to the constraint for a fixed 0 < γ < |D₀|. We will be concerned with the minimization problem ρ ↦ λ₁(ρ). We show that, under suitable conditions on α, β and γ, the minimizer does not inherit the radial symmetry of the domain.