Existence of solutions to the (rot,div)-system in -weighted spaces
The existence of solutions to the elliptic problem rot v = w, div v = 0 in a bounded domain Ω ⊂ ℝ³, , S = ∂Ω in weighted -Sobolev spaces is proved. It is assumed that an axis L crosses Ω and the weight is a negative power function of the distance to the axis. The main part of the proof is devoted to examining solutions of the problem in a neighbourhood of L. The existence in Ω follows from the technique of regularization.