The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

Indefinite Quasilinear Neumann Problem on Unbounded Domains

J. Chabrowski (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We investigate the solvability of the quasilinear Neumann problem (1.1) with sub- and supercritical exponents in an unbounded domain Ω. Under some integrability conditions on the coefficients we establish embedding theorems of weighted Sobolev spaces into weighted Lebesgue spaces. This is used to obtain solutions through a global minimization of a variational functional.

Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies

Elmostafa Bendib, Mustapha Khiddi (2025)

Applications of Mathematics

We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal...

Integrability for solutions to quasilinear elliptic systems

Francesco Leonetti, Pier Vincenzo Petricca (2010)

Commentationes Mathematicae Universitatis Carolinae

In this paper we prove an estimate for the measure of superlevel sets of weak solutions to quasilinear elliptic systems in divergence form. In some special cases, such an estimate allows us to improve on the integrability of the solution.

Currently displaying 1 – 6 of 6

Page 1