A continuity result for a quasilinear elliptic free boundary problem
We investigate a two dimensional quasilinear free boundary problem, and show that the free boundary is a union of graphs of continuous functions.
We investigate a two dimensional quasilinear free boundary problem, and show that the free boundary is a union of graphs of continuous functions.
We consider the existence of positive solutions of the singular nonlinear semipositone problem of the form where is a bounded smooth domain of with , , , , and , , and are positive parameters. Here is a continuous function. This model arises in the studies of population biology of one species with representing the concentration of the species. We discuss the existence of a positive solution when satisfies certain additional conditions. We use the method of sub-supersolutions...
We shall prove a weak comparison principle for quasilinear elliptic operators that includes the negative -Laplace operator, where satisfies certain conditions frequently seen in the research of quasilinear elliptic operators. In our result, it is characteristic that functions which are compared belong to different spaces.
The main result establishes that a weak solution of degenerate quasilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate quasilinear elliptic equations.
By using averaging techniques, some oscillation criteria for quasilinear elliptic differential equations of second order are obtained. These results extend and generalize the criteria for linear differential equations due to Kamenev, Philos and Wong.