Displaying 681 – 700 of 850

Showing per page

Some applications of minimax and topological degree to the study of the Dirichlet problem for elliptic partial differential equations

Leszek Gęba, Tadeusz Pruszko (1991)

Annales Polonici Mathematici

This paper treats nonlinear elliptic boundary value problems of the form (1) L[u] = p(x,u) in Ω n , u = D u = . . . = D m - 1 u on ∂Ω in the Sobolev space W 0 m , 2 ( Ω ) , where L is any selfadjoint strongly elliptic linear differential operator of order 2m. Using both topological degree arguments and minimax methods we obtain existence and multiplicity results for the above problem.

Some simple nonlinear PDE's without solutions

Haïm Brezis, Xavier Cabré (1998)

Bollettino dell'Unione Matematica Italiana

In questo articolo consideriamo alcune semplici equazioni a derivate parziali elittiche nonlineari, per le quali il Teorema della Funzione Inversa, se applicato in modo formale, suggerisce l'esistenza di soluzioni. Nonostante ciò, proviamo che non esistono soluzioni neppure in vari sensi deboli. Un problema modello è dato da - Δ u = u 2 / x 2 + c in Ω , u = 0 su Ω , dove Ω R N , N 2 , è un dominio limitato contenente 0 . Per qualunque costante c > 0 , arbitrariamente piccola, proviamo che questo problema non ammette soluzioni distribuzionali...

Spectre d'ordre supérieur et problèmes aux limites quasi-linéaires

Aomar Anane, Omar Chakrone, Jean-Pierre Gossez (2001)

Bollettino dell'Unione Matematica Italiana

Nello studio dei problemi del tipo - Δ u = f x , u + h x , si impongono generalmente delle condizione sul comportamento asintotico di f x , u rispetto allo spettro di - Δ . Avendo in vista dei problemi quasilineari del tipo - Δ u = f x , u , u + h x , sembra naturale introdurre una nozione di spettro per - Δ che tenga conto della dipendenza del membro di destra rispetto al gradiende u . L'oggetto di questo lavoro è di definire, studiare e applicare questa nuova nozione di spettro.

Currently displaying 681 – 700 of 850