Loading [MathJax]/extensions/MathZoom.js
We deal with a bifurcation result for the Dirichlet problem
⎧ a.e. in Ω,
⎨
⎩.
Starting from a weak lower semicontinuity result by E. Montefusco, which allows us to apply a general variational principle by B. Ricceri, we prove that, for μ close to zero, there exists a positive number such that for every the above problem admits a nonzero weak solution in satisfying .
We study necessary and sufficient conditions for the existence of nonnegative boundary blow-up solutions to the cooperative system in a smooth bounded domain of , where is the p-Laplacian operator defined by with p > 1, f and g are nondecreasing, nonnegative C¹ functions, and α and β are two positive parameters. The asymptotic behavior of solutions near the boundary is obtained and we get a uniqueness result for p = 2.
Currently displaying 1 –
2 of
2