Regularity and free boundary regularity for the Laplacian in Lipschitz and domains.
We prove boundedness and continuity for solutions to the Dirichlet problem for the equation where the left-hand side is a Leray-Lions operator from into with , is a Carathéodory function which grows like and is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of .
We prove a Sobolev and a Morrey type inequality involving the mean curvature and the tangential gradient with respect to the level sets of the function that appears in the inequalities. Then, as an application, we establish a priori estimates for semistable solutions of in a smooth bounded domain . In particular, we obtain new and bounds for the extremal solution when the domain is strictly convex. More precisely, we prove that if and if .