The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal -Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.
Let be a bounded starshaped domain and consider the -Laplacian problem
where is a positive parameter, , and is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the -Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.
Let be a smooth bounded domain in and let . We prove here the existence of nonnegative solutions in , to the problemwhere denotes the unit outer normal to , and denotes some function defined as:Moreover, we prove the tight convergence of towards one of the first eingenfunctions for the first Laplacian Operator on when goes to .
Let , and let , be given. In this paper we study the dimension of -harmonic measures that arise from non-negative solutions to the -Laplace equation, vanishing on a portion of , in the setting of -Reifenberg flat domains. We prove, for , that there exists small such that if is a -Reifenberg flat domain with , then -harmonic measure is concentrated on a set of -finite -measure. We prove, for , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of -harmonic measure...
In this paper we study a nonlinear Dirichlet elliptic differential equation driven by the p-Laplacian and with a nonsmooth potential. The hypotheses on the nonsmooth potential allow resonance with respect to the principal eigenvalue λ₁ > 0 of . We prove the existence of five nontrivial smooth solutions, two positive, two negative and the fifth nodal.
Some general multiplicity results for critical points of parameterized functionals on reflexive Banach spaces are established. In particular, one of them improves some aspects of a recent result by B. Ricceri. Applications to boundary value problems are also given.
In this paper we are concerned with the existence and uniqueness of the weak solution for the weighted p-Laplacian. The purpose of this paper is to discuss in some depth the problem of solvability of Dirichlet problem, therefore all proofs are contained in some detail. The main result of the work is the existence and uniqueness of the weak solution for the Dirichlet problem provided that the weights are bounded. Furthermore, under this assumption the solution belongs to the Sobolev space .
Currently displaying 1 –
11 of
11