Displaying 181 – 200 of 737

Showing per page

A multilevel method with correction by aggregation for solving discrete elliptic problems

Radim Blaheta (1986)

Aplikace matematiky

The author studies the behaviour of a multi-level method that combines the Jacobi iterations and the correction by aggragation of unknowns. Our considerations are restricted to a simple one-dimensional example, which allows us to employ the technique of the Fourier analysis. Despite of this restriction we are able to demonstrate differences between the behaviour of the algorithm considered and of multigrid methods employing interpolation instead of aggregation.

A multiscale correction method for local singular perturbations of the boundary

Marc Dambrine, Grégory Vial (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution uE of a second order elliptic equation posed in the perturbed domain with respect to the size parameter ε of the deformation. We are also interested in the variations of the energy functional. We propose a numerical method for the approximation of uE based on a multiscale superposition of the unperturbed solution u0 and a profile defined in a model domain. We...

A Multiscale Enrichment Procedure for Nonlinear Monotone Operators

Y. Efendiev, J. Galvis, M. Presho, J. Zhou (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937–955; J. Galvis and...

A Multiscale Model Reduction Method for Partial Differential Equations

Maolin Ci, Thomas Y. Hou, Zuoqiang Shi (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a multiscale model reduction method for partial differential equations. The main purpose of this method is to derive an effective equation for multiscale problems without scale separation. An essential ingredient of our method is to decompose the harmonic coordinates into a smooth part and a highly oscillatory part so that the smooth part is invertible and the highly oscillatory part is small. Such a decomposition plays a key role in our construction of the effective equation. We show...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...

A new approach to solving a quasilinear boundary value problem with p -Laplacian using optimization

Michaela Bailová, Jiří Bouchala (2023)

Applications of Mathematics

We present a novel approach to solving a specific type of quasilinear boundary value problem with p -Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even...

Currently displaying 181 – 200 of 737