Critical Neumann problem with competing Hardy potentials.
Motivated by a problem arising in astrophysics we study a nonlinear elliptic equation in RN with cylindrical symmetry and with singularities on a whole subspace of RN. We study the problem in a variational framework and, as the nonlinearity also displays a critical behavior, we use some suitable version of the Concentration-Compactness Principle. We obtain several results on existence and nonexistence of solutions.
Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
On the unit disk we study the Moser-Trudinger functional and its restrictions , where for . We prove that if a sequence of positive critical points of (for some ) blows up as , then , and weakly in and strongly in . Using this fact we also prove that when is large enough, then has no positive critical point, complementing previous existence results by Carleson-Chang, M. Struwe and Lamm-Robert-Struwe.
Curved triangular -elements which can be pieced together with the generalized Bell’s -elements are constructed. They are applied to solving the Dirichlet problem of an elliptic equation of the order in a domain with a smooth boundary by the finite element method. The effect of numerical integration is studied, sufficient conditions for the existence and uniqueness of the approximate solution are presented and the rate of convergence is estimated. The rate of convergence is the same as in the...