Univalent solutions of elliptic systems of Heinz-Lewy type
We show that phase space bounds on the eigenvalues of Schr¨odinger operators can be derived from universal bounds recently obtained by E. M. Harrell and the author via a monotonicity property with respect to coupling constants. In particular, we provide a new proof of sharp Lieb– Thirring inequalities.
In this paper we construct upper bounds for families of functionals of the formwhere Δ = div {u}. Particular cases of such functionals arise in Micromagnetics. We also use our technique to construct upper bounds for functionals that appear in a variational formulation of the method of vanishing viscosity for conservation laws.
We prove an upper bound for the Aviles–Giga problem, which involves the minimization of the energy over , where is a small parameter. Given such that and a.e., we construct a family satisfying: in and as goes to 0.