A Class of Elliptic Partial Differential Equations with Exponential Nonlinearities.
For , let be a bounded smooth domain and a compact smooth Riemannian manifold without boundary. Suppose that is a sequence of weak solutions in the critical dimension to the perturbed -polyharmonic maps with in and weakly in . Then is an -polyharmonic map. In particular, the space of -polyharmonic maps is sequentially compact for the weak- topology.
In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for -valued maps (the magnetization) of two variables : . We are interested in the behavior of minimizers as . They are expected to be -valued maps of vanishing distributional divergence , so that appropriate boundary conditions enforce line discontinuities. For finite , these line discontinuities are approximated by smooth transition layers, the so-called Néel walls. Néel...
Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient iterative...
Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient iterative...
A lot of papers and books analyze analytical a posteriori error estimates from the point of view of robustness, guaranteed upper bounds, global efficiency, etc. At the same time, adaptive finite element methods have acquired the principal position among algorithms for solving differential problems in many physical and technical applications. In this survey contribution, we present and compare, from the viewpoint of adaptive computation, several recently published error estimation procedures for...
The aim of this paper is to compare and realize three efficient iterative methods, which have mesh independent convergence, and to propose some improvements for them. We look for the numerical solution of a nonlinear model problem using FEM discretization with gradient and Newton type methods. Three numerical methods have been carried out, namely, the gradient, Newton and quasi-Newton methods. We have solved the model problem with these methods, we have investigated the differences between them...
The development of iterative methods for solving linear algebraic equations has brought the question of when the employment of these methods is more advantageous than the use of the direct ones. In the paper, a comparison of the direct and iterative methods is attempted. The methods are applied to solving a certain class of boundary-value problems for elliptic partial differential equations which are used for the numerical modeling of electromagnetic fields in geophysics. The numerical experiments...
The theory of compensated compactness of Murat and Tartar links the algebraic condition of rank-r convexity with the analytic condition of weak lower semicontinuity. The former is an algebraic condition and therefore it is, in principle, very easy to use. However, in applications of this theory, the need for an efficient classification of rank-r convex forms arises. In the present paper, we define the concept of extremal 2-forms and characterize them in the rotationally invariant jointly...