Displaying 41 – 60 of 61

Showing per page

An operator-splitting Galerkin/SUPG finite element method for population balance equations : stability and convergence

Sashikumaar Ganesan (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in...

An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games

Kristal K. Trejo, Julio B. Clempner, Alexander S. Poznyak (2016)

Kybernetika

This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative n -leaders and m -followers Markov game we consider the minimization of the L p - norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong L p - Stackelberg/Nash...

Analyticity for some degenerate one-dimensional evolution equations

G. Metafune (1998)

Studia Mathematica

We study the analyticity of the semigroups generated by some degenerate second order differential operators in the space C([α,β]), where [α,β] is a bounded real interval. The asymptotic behaviour and regularity with respect to the space variable are also investigated.

Anisotropic parabolic problems with slowly or rapidly growing terms

Agnieszka Świerczewska-Gwiazda (2014)

Colloquium Mathematicae

We consider an abstract parabolic problem in a framework of maximal monotone graphs, possibly multi-valued, with growth conditions formulated with the help of an x-dependent N-function. The main novelty of the paper consists in the lack of any growth restrictions on the N-function combined with its anisotropic character, namely we allow the dependence on all the directions of the gradient, not only on its absolute value. This leads to using the notion of modular convergence and studying in detail...

Currently displaying 41 – 60 of 61