Semilinear integro-differential equations with compact semigroups.
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations , in ; fully coupled by the boundary conditions , on , where is a bounded smooth domain in . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation . We prove that if blows up in finite time then can fail to blow up if and only if and , which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover,...
We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω x (0,T); fully coupled by the boundary conditions , on ∂Ω x (0,T), where Ω is a bounded smooth domain in . We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U,V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1) , which is the same condition as...
Nous considérons ici des solutions particulières des systèmes paraboliques de lois de conservation dans le domaine ou bien pour :Nous faisons l’hypothèse que le système réduit est hyperbolique. Notre but est la description de l’interaction d’ondes simples, mono-dimensionnelles, le plus souvent deux ondes exactement. L’une d’elle, au moins, est une onde de choc (pour le système réduit) visqueuse (pour le système parabolique). Il y a donc a priori un champ caractéristique vraiment non linéaire....
A class of -nonlinear parabolic systems with a nondiagonal principal matrix and strong nonlinearities in the gradient is considered.We discuss the global in time solvability results of the classical initial boundary value problems in the case of two spatial variables. The systems with nonlinearities , , , are analyzed.
We study semilinear equations and inequalities of parabolic type with discontinuous nonlinearities, possibly subjected to convex or even nonconvex constraint conditions. To prove some existence theorems we regard the solutions as «curves of maximal relaxed slope» for a suitable functional on the given constraint.