Displaying 361 – 380 of 453

Showing per page

The finite element solution of parabolic equations

Josef Nedoma (1978)

Aplikace matematiky

In contradistinction to former results, the error bounds introduced in this paper are given for fully discretized approximate soltuions of parabolic equations and for arbitrary curved domains. Simplicial isoparametric elements in n -dimensional space are applied. Degrees of accuracy of quadrature formulas are determined so that numerical integration does not worsen the optimal order of convergence in L 2 -norm of the method.

The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below

Tomasz Cieślak (2006)

Banach Center Publications

In [2] we proved two kinds of mechanisms of preventing the blow up in a quasilinear non-uniformly parabolic Keller-Segel systems. One of them was a priori boundedness from below of the Lyapunov functional. In fact, we were able to present a condition under which the Lyapunov functional is bounded from below and a solution exists globally. In the present paper we prove that whenever the Lyapunov functional is bounded from below the solution exists globally.

Transition from decay to blow-up in a parabolic system

Pavol Quittner (1998)

Archivum Mathematicum

We show a locally uniform bound for global nonnegative solutions of the system u t = Δ u + u v - b u , v t = Δ v + a u in ( 0 , + ) × Ω , u = v = 0 on ( 0 , + ) × Ω , where a > 0 , b 0 and Ω is a bounded domain in n , n 2 . In particular, the trajectories starting on the boundary of the domain of attraction of the zero solution are global and bounded.

Currently displaying 361 – 380 of 453