Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Su un teorema di unicità per l'equazione semilineare del calore in un dominio illimitato

Piero Bassanini (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A periodic BVP for a semilinear elliptic-parabolic equation in an unbounded domain Ω contained in a half-space of n is considered, with Dirichlet boundary conditions on the finite part of Ω . A theorem of uniqueness of periodic solutions is proved by showing that a suitable function of the "energy" E ( x ) is subharmonic in Ω and satisfies a Phragmèn-Lindelöf growth condition at infinity.

Super and ultracontractive bounds for doubly nonlinear evolution equations.

Matteo Bonforte, Gabriele Grillo (2006)

Revista Matemática Iberoamericana

We use logarithmic Sobolev inequalities involving the p-energy functional recently derived in [15], [21] to prove Lp-Lq smoothing and decay properties, of supercontractive and ultracontractive type, for the semigroups associated to doubly nonlinear evolution equations of the form u· = Δp(um) (with m(p - 1) ≥ 1) in an arbitrary euclidean domain, homogeneous Dirichlet boundary conditions being assumed. The bound are of the form ||u(t)||q ≤ C||u0||rγ / tβ for any r ≤ q ∈ [1,+∞) and t > 0 and...

Supersolutions and stabilization of the solutions of the equation∂u/∂t - div(|∇p|p-2 ∇u) = h(x,u), Part II.

Abderrahmane El Hachimi, François De Thélin (1991)

Publicacions Matemàtiques

In this paper we consider a nonlinear parabolic equation of the following type:(P)      ∂u/∂t - div(|∇p|p-2 ∇u) = h(x,u)with Dirichlet boundary conditions and initial data in the case when 1 < p < 2.We construct supersolutions of (P), and by use of them, we prove that for tn → +∞, the solution of (P) converges to some solution of the elliptic equation associated with (P).

Sur un problème parabolique-elliptique

Philippe Benilan, Petra Wittbold (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We prove existence (uniqueness is easy) of a weak solution to a boundary value problem for an equation like ( v - 1 ) t + = v x x + F ( v ) x where the function F : is only supposed to be locally lipschitz continuous. In order to replace the lack of compactness in t on v<1, we use nonlinear semigroup theory.

Currently displaying 21 – 38 of 38

Previous Page 2