Stability of global solutions to one-phase Stefan problem for a semilinear parabolic equation
A periodic BVP for a semilinear elliptic-parabolic equation in an unbounded domain contained in a half-space of is considered, with Dirichlet boundary conditions on the finite part of . A theorem of uniqueness of periodic solutions is proved by showing that a suitable function of the "energy" is subharmonic in and satisfies a Phragmèn-Lindelöf growth condition at infinity.
We use logarithmic Sobolev inequalities involving the p-energy functional recently derived in [15], [21] to prove Lp-Lq smoothing and decay properties, of supercontractive and ultracontractive type, for the semigroups associated to doubly nonlinear evolution equations of the form u· = Δp(um) (with m(p - 1) ≥ 1) in an arbitrary euclidean domain, homogeneous Dirichlet boundary conditions being assumed. The bound are of the form ||u(t)||q ≤ C||u0||rγ / tβ for any r ≤ q ∈ [1,+∞) and t > 0 and...
In this paper we consider a nonlinear parabolic equation of the following type:(P) ∂u/∂t - div(|∇p|p-2 ∇u) = h(x,u)with Dirichlet boundary conditions and initial data in the case when 1 < p < 2.We construct supersolutions of (P), and by use of them, we prove that for tn → +∞, the solution of (P) converges to some solution of the elliptic equation associated with (P).
We prove existence (uniqueness is easy) of a weak solution to a boundary value problem for an equation like where the function is only supposed to be locally lipschitz continuous. In order to replace the lack of compactness in t on v<1, we use nonlinear semigroup theory.