Radial symmetric solutions of the Cahn-Hilliard equation with degenerate mobility.
In this note we give some summability results for entropy solutions of the nonlinear parabolic equation ut - div ap (x, ∇u) = f in ] 0,T [xΩ with initial datum in L1(Ω) and assuming Dirichlet's boundary condition, where ap(.,.) is a Carathéodory function satisfying the classical Leray-Lions hypotheses, f ∈ L1 (]0,T[xΩ) and Ω is a domain in RN. We find spaces of type Lr(0,T;Mq(Ω)) containing the entropy solution and its gradient. We also include some summability results when f = 0 and the p-Laplacian...
We study a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is . The problem is posed in with nonnegative initial data that are integrable and decay at infinity. A previous paper has established the existence of mass-preserving, nonnegative weak solutions satisfying energy estimates and finite propagation. As main results we establish the boundedness and regularity of such weak solutions. Finally, we extend the existence...
We consider the general degenerate parabolic equation :We suppose that the flux is continuous, is nondecreasing continuous and both functions are not necessarily Lipschitz. We prove the existence of the renormalized solution of the associated Cauchy problem for initial data and source term. We establish the uniqueness of this type of solution under a structure condition and an assumption on the modulus of continuity of . The novelty of this work is that , , , , are not Lipschitz...