The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We establish the existence, uniqueness and main properties of the fundamental solutions for the fractional porous medium equation introduced in [51]. They are self-similar functions of the form with suitable and . As a main application of this construction, we prove that the asymptotic behaviour of general solutions is represented by such special solutions. Very singular solutions are also constructed. Among other interesting qualitative properties of the equation we prove an Aleksandrov reflection...
Numerical experiments suggest interesting properties in the several fields of fluid dynamics, plasma physics and population dynamics. Among such properties, we may observe the interesting phenomena; that is, the repeated appearance and disappearance phenomena of the region penetrated by the fluid in the flow through a porous media with absorption. The model equation in two dimensional space is written in the form of the initial-boundary value problem for a nonlinear diffusion equation with the effect...
This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources.
This paper is concerned with the initial boundary value problem for a nonlocal p-Laplacian evolution equation with critical initial energy. In the framework of the energy method, we construct an unstable set and establish its invariance. Finally, the finite time blow-up of solutions is derived by a combination of the unstable set and the concavity method.
This paper deals with the blow-up properties of the non-Newtonian polytropic filtration equation
with homogeneous Dirichlet boundary conditions. The blow-up conditions, upper and lower bounds of the blow-up time, and the blow-up rate are established by using the energy method and differential inequality techniques.
We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic -Laplacian equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of degenerate/singular...
We consider a one-dimensional semilinear parabolic equation with a gradient nonlinearity. We provide a complete classification of large time behavior of the classical solutions : either the space derivative blows up in finite time (with itself remaining bounded), or is global and converges in norm to the unique steady state. The main difficulty is to prove boundedness of all global solutions. To do so, we explicitly compute a nontrivial Lyapunov functional by carrying out the method of...
Currently displaying 1 –
14 of
14