Page 1

Displaying 1 – 19 of 19

Showing per page

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory

Akira Mizutani, Norikazu Saito, Takashi Suzuki (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L 1 contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L 1 and L , respectively, of the scheme are established. Under certain hypotheses on the data, we also derive L 1 convergence without any convergence rate....

Finite element approximation for degenerate parabolic equations. an application of nonlinear semigroup theory

Akira Mizutani, Norikazu Saito, Takashi Suzuki (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L1 contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L1 and L∞, respectively, of the scheme are established. Under certain hypotheses on the data, we also derive L1 convergence without any...

Finite element approximation of a Stefan problem with degenerate Joule heating

John W. Barrett, Robert Nürnberg (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a fully practical finite element approximation of the following degenerate system t ρ ( u ) - . ( α ( u ) u ) σ ( u ) | φ | 2 , . ( σ ( u ) φ ) = 0 subject to an initial condition on the temperature, u , and boundary conditions on both u and the electric potential, φ . In the above ρ ( u ) is the enthalpy incorporating the latent heat of melting, α ( u ) > 0 is the temperature dependent heat conductivity, and σ ( u ) 0 is the electrical conductivity. The latter is zero in the frozen zone, u 0 , which gives rise to the degeneracy in this Stefan system. In addition to showing stability...

Finite element approximation of a Stefan problem with degenerate Joule heating

John W. Barrett, Robert Nürnberg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a fully practical finite element approximation of the following degenerate system t ρ ( u ) - . ( α ( u ) u ) σ ( u ) | φ | 2 , . ( σ ( u ) φ ) = 0 subject to an initial condition on the temperature, u, and boundary conditions on both u and the electric potential, ϕ. In the above p(u) is the enthalpy incorporating the latent heat of melting, α(u) > 0 is the temperature dependent heat conductivity, and σ(u) > 0 is the electrical conductivity. The latter is zero in the frozen zone, u ≤ 0, which gives rise to the degeneracy in this Stefan...

Finite element approximation of a two-layered liquid film in the presence of insoluble surfactants

John W. Barrett, Linda El Alaoui (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a system of degenerate parabolic equations modelling a thin film, consisting of two layers of immiscible Newtonian liquids, on a solid horizontal substrate. In addition, the model includes the presence of insoluble surfactants on both the free liquid-liquid and liquid-air interfaces, and the presence of both attractive and repulsive van der Waals forces in terms of the heights of the two layers. We show that this system formally satisfies a Lyapunov structure, and a second energy...

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d , d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Finite-dimensional pullback attractors for parabolic equations with Hardy type potentials

Cung The Anh, Ta Thi Hong Yen (2011)

Annales Polonici Mathematici

Using the asymptotic a priori estimate method, we prove the existence of a pullback -attractor for a reaction-diffusion equation with an inverse-square potential in a bounded domain of N (N ≥ 3), with the nonlinearity of polynomial type and a suitable exponential growth of the external force. Then under some additional conditions, we show that the pullback -attractor has a finite fractal dimension and is upper semicontinuous with respect to the parameter in the potential.

Forced anisotropic mean curvature flow of graphs in relative geometry

Dieu Hung Hoang, Michal Beneš (2014)

Mathematica Bohemica

The paper is concerned with the graph formulation of forced anisotropic mean curvature flow in the context of the heteroepitaxial growth of quantum dots. The problem is generalized by including anisotropy by means of Finsler metrics. A semi-discrete numerical scheme based on the method of lines is presented. Computational results with various anisotropy settings are shown and discussed.

Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Raimund Bürger, Ricardo Ruiz, Kai Schneider, Mauricio Sepúlveda (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order...

Fundamental solutions and asymptotic behaviour for the p-Laplacian equation.

Soshana Kamin, Juan Luis Vázquez (1988)

Revista Matemática Iberoamericana

We establish the uniqueness of fundamental solutions to the p-Laplacian equationut = div (|Du|p-2 Du),   p > 2,defined for x ∈ RN, 0 < t < T. We derive from this result the asymptotic behavoir of nonnegative solutions with finite mass, i.e., such that u(*,t) ∈ L1(RN). Our methods also apply to the porous medium equationut = ∆(um),   m > 1,giving new and simpler proofs of known results. We finally introduce yet another method of proving asymptotic results based on the...

Currently displaying 1 – 19 of 19

Page 1