-estimate for qualitatively bounded weak solutions of nonlinear degenerate diagonal parabolic systems.
In this paper, we consider the global existence, uniqueness and estimates of weak solutions to quasilinear parabolic equation of -Laplacian type in with zero Dirichlet boundary condition in . Further, we obtain the estimate of the solution and for with the initial data
We consider the following reaction-diffusion equation: where . In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)] it was shown that in the case of , the above problem (KS) is solvable globally in time for “small data”. Moreover, the decay of the solution (u,v) in was proved. In this paper, we consider the case of “ and small data” with any fixed and show that (i) there exists a time global solution (u,v) of (KS) and it decays to...
We study the large time asymptotic behavior of solutions of the doubly degenerate parabolic equation with an initial condition . Here the exponents , and satisfy , and .
% We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.
This note is devoted to the study of the long time behaviour of solutions to the heat and the porous medium equations in the presence of an external source term, using entropy methods and self-similar variables. Intermediate asymptotics and convergence results are shown using interpolation inequalities, Gagliardo-Nirenberg-Sobolev inequalities and Csiszár-Kullback type estimates.
Dans ce papier on étudie l’existence et le comportement asymptotique des solutions de type ondes progressives à propagations finies de l’équation . On prouve que ces solutions existent si et seulement si et ou bien et . On donne aussi le comportement asymptotique de ces solutions.
Dans cette article, on étudie la limite lorsque m --> ∞ de la solution du problème de Cauchy ut - ∆um + div F(u) = 0 sur un ouvert Omega avec des conditions aux bords de type Dirichlet et une donnée initiale u0 ≥ 0.