Displaying 41 – 60 of 70

Showing per page

Remarks on weak stabilization of semilinear wave equations

Alain Haraux (2001)

ESAIM: Control, Optimisation and Calculus of Variations

If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system converge weakly to 0 as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith Vancostenoble....

Remarks on weak stabilization of semilinear wave equations

Alain Haraux (2010)

ESAIM: Control, Optimisation and Calculus of Variations

If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system converge weakly to 0 as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith Vancostenoble. ...

Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems

Walid Ben Youssef, Thierry Colin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study the long wave approximation for quasilinear symmetric hyperbolic systems. Using the technics developed by Joly-Métivier-Rauch for nonlinear geometrical optics, we prove that under suitable assumptions the long wave limit is described by KdV-type systems. The error estimate if the system is coupled appears to be better. We apply formally our technics to Euler equations with free surface and Euler-Poisson systems. This leads to new systems of KdV-type.

Scattering theory for a nonlinear system of wave equations with critical growth

Changxing Miao, Youbin Zhu (2006)

Colloquium Mathematicae

We consider scattering properties of the critical nonlinear system of wave equations with Hamilton structure ⎧uₜₜ - Δu = -F₁(|u|²,|v|²)u, ⎨ ⎩vₜₜ - Δv = -F₂(|u|²,|v|²)v, for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). By using the energy-conservation law over the exterior of a truncated forward light cone and a dilation identity, we get a decay estimate for the potential...

Currently displaying 41 – 60 of 70