Displaying 181 – 200 of 475

Showing per page

Global stability of travelling fronts for a damped wave equation with bistable nonlinearity

Thierry Gallay, Romain Joly (2009)

Annales scientifiques de l'École Normale Supérieure

We consider the damped wave equation α u t t + u t = u x x - V ' ( u ) on the whole real line, where V is a bistable potential. This equation has travelling front solutions of the form u ( x , t ) = h ( x - s t ) which describe a moving interface between two different steady states of the system, one of which being the global minimum of V . We show that, if the initial data are sufficiently close to the profile of a front for large | x | , the solution of the damped wave equation converges uniformly on to a travelling front as t + . The proof of this global stability...

Hyperbolic Equations in Uniform Spaces

J. W. Cholewa, Tomasz Dlotko (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

The paper is devoted to the Cauchy problem for a semilinear damped wave equation in the whole of ℝ ⁿ. Under suitable assumptions a bounded dissipative semigroup of global solutions is constructed in a locally uniform space H ̇ ¹ l u ( ) × L ̇ ² l u ( ) . Asymptotic compactness of this semigroup and the existence of a global attractor are then shown.

Inégalités de Strichartz et équations d’ondes quasilinéaires

Hajer Bahouri, Jean-Yves Chemin (1997/1998)

Séminaire Équations aux dérivées partielles

Dans ce texte, notre but est de résoudre des équations d’ondes quasilinéaires pour des données initiales moins régulières que ce qu’impose les méthodes d’énergie. Ceci impose de démontrer des estimées de type Strichartz pour des opérateurs d’ondes à coefficients seulement lipschitziens.

Currently displaying 181 – 200 of 475