Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux
We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint -pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the...
Nous étudions les résonances de Rayleigh créées par un obstacle strictement convexe à bord analytique en dimension 2. Nous montrons qu’il existe exactement deux suites de résonances et convergeant exponentiellement vite vers l’axe réel dans un voisinage polynomial de l’axe réel, et exponentiellement proches d’une suite de quasimodes réels. De plus, est un symbole analytique d’ordre 0 en la variable dont on donne le premier terme du développement. Nous construisons pour cela des quasimodes...
This paper is concerned with the distribution of the resonances near the real axis for the transmission problem for a strictly convex bounded obstacle in , , with a smooth boundary. We consider two distinct cases. If the speed of propagation in the interior of the body is strictly less than that in the exterior, we obtain an infinite sequence of resonances tending rapidly to the real axis. These resonances are associated with a quasimode for the transmission problem the frequency support of...
Dans cet exposé, on décrit un travail effectué sous la direction de J. Sjöstrand. On prouve des majorations et des minorations du nombre de résonances d’un opérateur de Schrödinger semi-classique dans des petits disques centrés en , une valeur critique de .
Using an abstract result on Riesz basis generation for discrete operators in general Hilbert spaces, we show, in this article, that the generalized eigenfunctions of an Euler-Bernoulli beam equation with joint linear feedback control form a Riesz basis for the state space. The spectrum-determined growth condition is hence obtained. Meanwhile, the exponential stability as well as the asymptotic expansion of eigenvalues are also readily obtained by a straightforward computation.