Displaying 201 – 220 of 237

Showing per page

Stochastic homogenization of a class of monotone eigenvalue problems

Nils Svanstedt (2010)

Applications of Mathematics

Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form - div a T 1 x ε 1 ω 1 , T 2 x ε 2 ω 2 , u ε ω = λ ε ω 𝒞 ( u ε ω ) . It is shown, under certain structure assumptions on the random map a ( ω 1 , ω 2 , ξ ) , that the sequence { λ ε ω , k , u ε ω , k } of k th eigenpairs converges to the k th eigenpair { λ k , u k } of the homogenized eigenvalue problem - div ( b ( u ) ) = λ 𝒞 ¯ ( u ) . For the case of p -Laplacian type maps we characterize b explicitly.

Strichartz inequality for orthonormal functions

Rupert Frank, Mathieu Lewin, Elliott H. Lieb, Robert Seiringer (2014)

Journal of the European Mathematical Society

We prove a Strichartz inequality for a system of orthonormal functions, with an optimal behavior of the constant in the limit of a large number of functions. The estimate generalizes the usual Strichartz inequality, in the same fashion as the Lieb-Thirring inequality generalizes the Sobolev inequality. As an application, we consider the Schrödinger equation in a time-dependent potential and we show the existence of the wave operator in Schatten spaces.

Strong boundary values : independence of the defining function and spaces of test functions

Jean-Pierre Rosay, Edgar Lee Stout (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The notion of “strong boundary values” was introduced by the authors in the local theory of hyperfunction boundary values (boundary values of functions with unrestricted growth, not necessarily solutions of a PDE). In this paper two points are clarified, at least in the global setting (compact boundaries): independence with respect to the defining function that defines the boundary, and the spaces of test functions to be used. The proofs rely crucially on simple results in spectral asymptotics.

Strong diamagnetism for general domains and application

Soeren Fournais, Bernard Helffer (2007)

Annales de l’institut Fourier

We consider the Neumann Laplacian with constant magnetic field on a regular domain in 2 . Let B be the strength of the magnetic field and let λ 1 ( B ) be the first eigenvalue of this Laplacian. It is proved that B λ 1 ( B ) is monotone increasing for large B . Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.

Sturm-Liouville systems are Riesz-spectral systems

Cédric Delattre, Denis Dochain, Joseph Winkin (2003)

International Journal of Applied Mathematics and Computer Science

The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L^2(a,b) and the infinitesimal generator of a C_0-semigroup of bounded linear operators.

Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method

Pengzhan Huang (2014)

Applications of Mathematics

This paper presents a superconvergence result based on projection method for stabilized finite element approximation of the Stokes eigenvalue problem. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The paper complements the work of Li et al. (2012), which establishes the superconvergence result of the Stokes equations by the stabilized finite element method. Moreover, numerical tests confirm the theoretical analysis.

Sur la stabilité des couches limites de viscosité

Denis Serre (2001)

Annales de l’institut Fourier

Pour un système parabolique de lois de conservation, nous considérons le problème mixte, dans le domaine x > 0 . Pour une condition de Dirichlet, le système admet en général des solutions stationnaires U ( x ) , qui tendent vers une limite en + . Ce sont les profils des couches limites, dans l’approximation du second ordre, pour le système hyperbolique du premier ordre sous-jacent. La stabilité de cette couche limite est liée à la stabilité linéaire asymptotique de U . On étudie celle-ci au moyen d’une fonction d’Evans,...

Currently displaying 201 – 220 of 237