Displaying 741 – 760 of 1562

Showing per page

On the eigenvalues of a Robin problem with a large parameter

Alexey Filinovskiy (2014)

Mathematica Bohemica

We consider the Robin eigenvalue problem Δ u + λ u = 0 in Ω , u / ν + α u = 0 on Ω where Ω n , n 2 is a bounded domain and α is a real parameter. We investigate the behavior of the eigenvalues λ k ( α ) of this problem as functions of the parameter α . We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative λ 1 ' ( α ) . Assuming that the boundary Ω is of class C 2 we obtain estimates to the difference λ k D - λ k ( α ) between the k -th eigenvalue of the Laplace operator with Dirichlet...

On the eigenvalues of an elliptic operator a x , H u

Sergio Campanato (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let Ω be a bounded open convex set of class C 2 . Let a x , H u be a non linear operator satisfying the condition (A) (elliptic) with constants α , γ , δ . We prove that a number λ 0 is an eigenvalue for the operator a x , H u if and only if the number α λ is an eigen-value for the operator Δ u . If λ 0 , the two systems a x , H u = λ u and Δ u = α λ u have the same solutions. In particular, also the eventual eigen-values of the operator a x , H u should all be negative. Finally, we obtain a sufficient condition for the existence of solutions u H 2 H 0 1 Ω of the system...

On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems.

Jacqueline Fleckinger, Jesús Hernández, François De Thélin (2003)

RACSAM

We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.

On the generic spectrum of a riemannian cover

Steven Zelditch (1990)

Annales de l'institut Fourier

Let M be a compact manifold let G be a finite group acting freely on M , and let G be the (Fréchet) space of G -invariant metric on M . A natural conjecture is that, for a generic metric in G , all eigenspaces of the Laplacian are irreducible (as orthogonal representations of G ). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim M dim V for all irreducibles V of G . As an application, we construct isospectral manifolds with simple eigenvalue...

Currently displaying 741 – 760 of 1562