Displaying 1161 – 1180 of 1562

Showing per page

Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method

Pengzhan Huang (2014)

Applications of Mathematics

This paper presents a superconvergence result based on projection method for stabilized finite element approximation of the Stokes eigenvalue problem. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The paper complements the work of Li et al. (2012), which establishes the superconvergence result of the Stokes equations by the stabilized finite element method. Moreover, numerical tests confirm the theoretical analysis.

Sur la stabilité des couches limites de viscosité

Denis Serre (2001)

Annales de l’institut Fourier

Pour un système parabolique de lois de conservation, nous considérons le problème mixte, dans le domaine x > 0 . Pour une condition de Dirichlet, le système admet en général des solutions stationnaires U ( x ) , qui tendent vers une limite en + . Ce sont les profils des couches limites, dans l’approximation du second ordre, pour le système hyperbolique du premier ordre sous-jacent. La stabilité de cette couche limite est liée à la stabilité linéaire asymptotique de U . On étudie celle-ci au moyen d’une fonction d’Evans,...

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cette article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2007/2008)

Séminaire de théorie spectrale et géométrie

Dans cet article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Symmetrization of functions and principal eigenvalues of elliptic operators

François Hamel, Nikolai Nadirashvili, Emmanuel Russ (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

In this paper, we consider shape optimization problems for the principal eigenvalues of second order uniformly elliptic operators in bounded domains of n . We first recall the classical Rayleigh-Faber-Krahn problem, that is the minimization of the principal eigenvalue of the Dirichlet Laplacian in a domain with fixed Lebesgue measure. We then consider the case of the Laplacian with a bounded drift, that is the operator - Δ + v · , for which the minimization problem is still well posed. Next, we deal with...

Currently displaying 1161 – 1180 of 1562