Displaying 1321 – 1340 of 1562

Showing per page

Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds

David Borthwick, Colin Guillarmou (2016)

Journal of the European Mathematical Society

On geometrically finite hyperbolic manifolds Γ d , including those with non-maximal rank cusps, we give upper bounds on the number N ( R ) of resonances of the Laplacian in disks of size R as R . In particular, if the parabolic subgroups of Γ satisfy a certain Diophantine condition, the bound is N ( R ) = 𝒪 ( R d ( log R ) d + 1 ) .

Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket

Gabriele Bonanno, Giovanni Molica Bisci, Vicenţiu Rădulescu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpiński gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpiński fractal. The abstract results are illustrated by explicit examples.

Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations

Markus Stammberger, Heinrich Voss (2014)

Applications of Mathematics

Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.

Wave Operators for Defocusing Matrix Zakharov-Shabat Systems with Pnonvanishing at Infinity

Demontis, Francesco, der Mee, Cornelis van (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 34L25; secondary: 47A40, 81Q10.In this article we prove that the wave operators describing the direct scattering of the defocusing matrix Zakharov-Shabat system with potentials having distinct nonzero values with the same modulus at ± ∞ exist, are asymptotically complete, and lead to a unitary scattering operator. We also prove that the free Hamiltonian operator is absolutely continuous.

Weak Asymptotics for Schrödinger Evolution

S. A. Denisov (2010)

Mathematical Modelling of Natural Phenomena

In this short note, we apply the technique developed in [Math. Model. Nat. Phenom., 5 (2010), No. 4, 122-149] to study the long-time evolution for Schrödinger equation with slowly decaying potential.

Weighted norm estimates and L p -spectral independence of linear operators

Peer C. Kunstmann, Hendrik Vogt (2007)

Colloquium Mathematicae

We investigate the L p -spectrum of linear operators defined consistently on L p ( Ω ) for p₀ ≤ p ≤ p₁, where (Ω,μ) is an arbitrary σ-finite measure space and 1 ≤ p₀ < p₁ ≤ ∞. We prove p-independence of the L p -spectrum assuming weighted norm estimates. The assumptions are formulated in terms of a measurable semi-metric d on (Ω,μ); the balls with respect to this semi-metric are required to satisfy a subexponential volume growth condition. We show how previous results on L p -spectral independence can be treated...

Weighted Sobolev-Lieb-Thirring inequalities.

Kazuya Tachizawa (2005)

Revista Matemática Iberoamericana

We give a weighted version of the Sobolev-Lieb-Thirring inequality for suborthonormal functions. In the proof of our result we use phi-transform of Frazier-Jawerth.

Currently displaying 1321 – 1340 of 1562