Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains
For a bounded domain , we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system , , with , , and very general data classes for , , such that may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of...