Loading [MathJax]/extensions/MathZoom.js
One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a control problem associated with the linearized equation.
One proves that the steady-state solutions to Navier–Stokes
equations with internal controllers are locally exponentially stabilizable by linear feedback controllers
provided by a LQ control problem associated with the linearized equation.
We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...
We study the local exponential stabilization of the 2D and 3D
Navier-Stokes equations in a bounded domain, around a given
steady-state flow, by means of a boundary control. We look for a
control so that the solution to the Navier-Stokes equations be a
strong solution. In the 3D case, such solutions may exist if the
Dirichlet control satisfies a compatibility condition with the
initial condition. In order to determine a feedback law satisfying
such a compatibility condition, we consider an extended...
We construct a Galerkin finite element method for the numerical approximation of weak
solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic
dumbbell models that arise from the kinetic theory of dilute solutions of polymeric
liquids with noninteracting polymer chains. The class of models involves the unsteady
incompressible Navier–Stokes equations in a bounded domain
Ω ⊂ ℝd, d = 2 or 3, for
the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak
solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic
dumbbell models that arise from the kinetic theory of dilute solutions of polymeric
liquids with noninteracting polymer chains. The class of models involves the unsteady
incompressible Navier–Stokes equations in a bounded domain
Ω ⊂ ℝd, d = 2 or 3, for
the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions
of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ , d = 2 or 3, for the velocity and
the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
Motivé par l'étude des fluides tournants entre deux plaques, nous considérons l'équation tridimensionnelle de Navier-Stokes incompressible avec viscosité verticale nulle. Nous démontrons l'existence locale et l'unicité de la solution dans un espace critique (invariant par le changement d'échelle de l'équation). La solution est globale en temps si la donnée initiale est petite par rapport à la viscosité horizontale. Nous obtenons l'unicité de la solution dans un espace plus grand que l'espace des...
Motivated by rotating fluids, we study incompressible fluids
with anisotropic viscosity.
We use anisotropic spaces that enable us to prove existence
theorems
for less regular initial data than usual. In the case of rotating
fluids, in the whole space, we prove Strichartz-type anisotropic,
dispersive estimates
which allow us to prove global wellposedness for fast enough
rotation.
Currently displaying 1 –
20 of
27