Über die stationären Gleichungen von Navier-Stokes, semilineare elliptische und parabolische Gleichungen.
The Navier–Stokes equations are approximated by means of a fractional step, Chorin–Temam projection method; the time derivative is approximated by a three-level backward finite difference, whereas the approximation in space is performed by a Galerkin technique. It is shown that the proposed scheme yields an error of for the velocity in the norm of l2(L2(Ω)d), where l ≥ 1 is the polynomial degree of the velocity approximation. It is also shown that the splitting error of projection schemes based...
On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans , où est un domaine lipschitzien borné de ().
The main result of this paper is the proof of uniqueness for mild solutions of the Navier-Stokes equations in L3(R3). This result is extended as well to some Morrey-Campanato spaces.
It is well known that people can derive the radiation MHD model from an MHD- approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD- approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD- approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates...
Consider the Navier-Stokes equation with the initial data . Let and be two weak solutions with the same initial value . If satisfies the usual energy inequality and if where is the multiplier space, then we have .
We prove a uniqueness result of weak solutions to the Cauchy problem of a Keller-Segel-Navier-Stokes system with a logistic term.
Existence of solutions to many kinds of PDEs can be proved by using a fixed point argument or an iterative argument in some Banach space. This usually yields uniqueness in the same Banach space where the fixed point is performed. We give here two methods to prove uniqueness in a more natural class. The first one is based on proving some estimates in a less regular space. The second one is based on a duality argument. In this paper, we present some results obtained in collaboration with Pierre-Louis...