The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak solution...
This paper presents a model based on spectral hyperviscosity for the
simulation of 3D turbulent incompressible flows. One particularity of this
model is that the hyperviscosity is active only at the short velocity scales,
a feature which is reminiscent of Large Eddy Simulation models.
We propose a Fourier–Galerkin approximation of the perturbed
Navier–Stokes equations and we show that, as the cutoff wavenumber
goes to infinity, the solution of the model
converges (up to subsequences) to a weak...
We consider a free interface problem for the Navier-Stokes equations. We obtain local in time unique existence of solutions to this problem for any initial data and external forces, and global in time unique existence of solutions for sufficiently small initial data. Thanks to global in time maximal regularity of the linearized problem, we can prove a global in time existence and uniqueness theorem by the contraction mapping principle.
Saccular aneurisms, swelling of a blood vessel, are investigated in order (i) to estimate the development risk of the wall lesion, before and after intravascular treatment, assuming that the pressure is the major factor, and (ii) to better plan medical interventions. Numerical simulations, using the finite element method, are performed in three-dimensional aneurisms. Computational meshes are derived from medical imaging data to take into account both between-subject and within-subject anatomical...
Saccular aneurisms, swelling of a blood vessel,
are investigated in order (i) to estimate the development risk of
the wall lesion, before and after intravascular treatment,
assuming that the pressure is the major factor,
and (ii) to better plan medical interventions.
Numerical simulations, using the finite element method,
are performed in three-dimensional aneurisms.
Computational meshes are derived from medical imaging data
to take into account both between-subject and within-subject
anatomical...
Currently displaying 1 –
11 of
11