Loading [MathJax]/extensions/MathZoom.js
This text deals with inverse spectral theory in a semiclassical setting. Given a quantum system, the haunting question is “What interesting quantities can be discovered on the spectrum that can help to characterize the system ?” The general framework will be semiclassical analysis, and the issue is to recover the classical dynamics from the quantum spectrum. The coupling of a spin and an oscillator is a fundamental example in physics where some nontrivial explicit calculations can be done.
We prove a Strichartz inequality for a system of orthonormal functions, with an optimal behavior of the constant in the limit of a large number of functions. The estimate generalizes the usual Strichartz inequality, in the same fashion as the Lieb-Thirring inequality generalizes the Sobolev inequality. As an application, we consider the Schrödinger equation in a time-dependent potential and we show the existence of the wave operator in Schatten spaces.
We consider an initial-boundary value problem for a generalized 2D time-dependent Schrödinger equation (with variable coefficients) on a semi-infinite strip. For the Crank–Nicolson-type finite-difference scheme with approximate or discrete transparent boundary conditions (TBCs), the Strang-type splitting with respect to the potential is applied. For the resulting method, the unconditional uniform in time L2-stability is proved. Due to the splitting, an effective direct algorithm using FFT is developed...
We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.
We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.
We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.
This article considers the linear 1-d Schrödinger equation in (0,π)
perturbed by a vanishing viscosity term depending on a small parameter
ε > 0. We study the boundary controllability properties of this
perturbed equation and the behavior of its boundary controls
vε as ε goes to zero. It
is shown that, for any time T sufficiently large but independent of
ε and for each initial datum in
H−1(0,π), there exists a uniformly...
This article considers the linear 1-d Schrödinger equation in (0,π)
perturbed by a vanishing viscosity term depending on a small parameter
ε > 0. We study the boundary controllability properties of this
perturbed equation and the behavior of its boundary controls
vε as ε goes to zero. It
is shown that, for any time T sufficiently large but independent of
ε and for each initial datum in
H−1(0,π), there exists a uniformly...
Currently displaying 21 –
28 of
28