Page 1

Displaying 1 – 6 of 6

Showing per page

High Frequency limit of the Helmholtz Equations

Jean-David Benamou, François Castella, Thodoros Katsaounis, Benoît Perthame (1999/2000)

Séminaire Équations aux dérivées partielles

We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term (which does not share the...

High frequency limit of the Helmholtz equations.

Jean-David Benamou, François Castella, Theodoros Katsaounis, Benoit Perthame (2002)

Revista Matemática Iberoamericana

We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term ( which does not share the...

Homogenization of the Maxwell equations: Case I. Linear theory

Niklas Wellander (2001)

Applications of Mathematics

The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.

Homogenization of the Maxwell Equations: Case II. Nonlinear conductivity

Niklas Wellander (2002)

Applications of Mathematics

The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous...

Currently displaying 1 – 6 of 6

Page 1