Page 1

Displaying 1 – 6 of 6

Showing per page

The Effect of Bacteria on Epidermal Wound Healing

E. Agyingi, S. Maggelakis, D. Ross (2010)

Mathematical Modelling of Natural Phenomena

Epidermal wound healing is a complex process that repairs injured tissue. The complexity of this process increases when bacteria are present in a wound; the bacteria interaction determines whether infection sets in. Because of underlying physiological problems infected wounds do not follow the normal healing pattern. In this paper we present a mathematical model of the healing of both infected and uninfected wounds. At the core of our model is an...

The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology

H. G. Othmer, K. Painter, D. Umulis, C. Xue (2009)

Mathematical Modelling of Natural Phenomena

We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding...

The Rothe method for the McKendrick-von Foerster equation

Henryk Leszczyński, Piotr Zwierkowski (2013)

Czechoslovak Mathematical Journal

We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in L and...

Transport Equation Reduction for a Mathematical Model in Plant Growth

S. Boujena, A. Chiboub, J. Pousin (2011)

Mathematical Modelling of Natural Phenomena

In this article a variational reduction method, how to handle the case of heterogenous domains for the Transport equation, is presented. This method allows to get rid of the restrictions on the size of time steps due to the thin parts of the domain. In the thin part of the domain, only a differential problem, with respect to the space variable, is to be approximated numerically. Numerical results are presented with a simple example. The variational...

Currently displaying 1 – 6 of 6

Page 1