Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes
Soit un sous-différentiel (non coercif) dans un espace de Hilbert.On étudie l’existence de solutions bornées ou périodiques pour l’équationDeux solutions périodiques éventuelles diffèrent d’une constante. Si est périodique et compact, toute trajectoire bornée est asymptote pour à une trajectoire périodique.
On considère le problème :où est un ouvert borné de , où est une fonction de Carathéodory, monotone en , coercive, qui définit un opérateur dans (avec ), et où appartient à ou est une mesure bornée sur . On introduit une nouvelle définition de la solution de ce problème, la notion de solution renormalisée (ou entropique), et on montre l’existence d’une telle solution et sa continuité par rapport à . Quand appartient à , on montre en outre que cette solution est unique.
The ergodic behaviour of homogeneous strong Feller irreducible Markov processes in Banach spaces is studied; in particular, existence and uniqueness of finite and -finite invariant measures are considered. The results obtained are applied to solutions of stochastic parabolic equations.
The phase relaxation model is a diffuse interface model with small parameter ε which consists of a parabolic PDE for temperature θ and an ODE with double obstacles for phase variable χ. To decouple the system a semi-explicit Euler method with variable step-size τ is used for time discretization, which requires the stability constraint τ ≤ ε. Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter h are further employed for space discretization. A posteriori...
The identification problem of a functional coefficient in a parabolic equation is considered. For this purpose an output least squares method is introduced, and estimates of the rate of convergence for the Crank-Nicolson time discretization scheme are proved, the equation being approximated with the finite element Galerkin method with respect to space variables.