Displaying 41 – 60 of 149

Showing per page

Essential m-dissipativity of Kolmogorov operators corresponding to periodic 2 D -Navier Stokes equations

Viorel Barbu, Giuseppe Da Prato, Arnaud Debussche (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove the essential m-dissipativity of the Kolmogorov operator associated with the stochastic Navier-Stokes flow with periodic boundary conditions in a space L 2 H , ν where ν is an invariant measure

Estimates in the Hardy-Sobolev space of the annulus and stability result

Imed Feki (2013)

Czechoslovak Mathematical Journal

The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space H k , ; k * of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces...

Étude de l’équation 1 2 Δ u - u μ = 0 μ est une mesure positive

Denis Feyel, A. de La Pradelle (1988)

Annales de l'institut Fourier

On montre que les solutions faibles de l’équation Δ u - u μ = 0 , où μ est une mesure positive négligeant les polaires, vérifient une inégalité de Harnack. On s’occupe également des sursolutions dont on fait la représentation intégrale a l’aide d’une fonction de Green. Comme les solutions sont discontinues, on est amené à utiliser les formules probabilistes.

Euler schemes and half-space approximation for the simulation of diffusion in a domain

Emmanuel Gobet (2001)

ESAIM: Probability and Statistics

This paper is concerned with the problem of simulation of ( X t ) 0 t T , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D : namely, we consider the case where the boundary D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [ 0 , T ] , we propose new discretization schemes: they are fully implementable and provide a weak error of order N - 1 under some conditions. The construction...

Euler schemes and half-space approximation for the simulation of diffusion in a domain

Emmanuel Gobet (2010)

ESAIM: Probability and Statistics

This paper is concerned with the problem of simulation of (Xt)0≤t≤T, the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D: namely, we consider the case where the boundary ∂D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [0,T], we propose new discretization schemes: they are fully implementable and provide a weak error of order N-1 under some conditions....

Evolution in a migrating population model

Włodzimierz Bąk, Tadeusz Nadzieja (2012)

Applicationes Mathematicae

We consider a model of migrating population occupying a compact domain Ω in the plane. We assume the Malthusian growth of the population at each point x ∈ Ω and that the mobility of individuals depends on x ∈ Ω. The evolution of the probability density u(x,t) that a randomly chosen individual occupies x ∈ Ω at time t is described by the nonlocal linear equation u t = Ω φ ( y ) u ( y , t ) d y - φ ( x ) u ( x , t ) , where φ(x) is a given function characterizing the mobility of individuals living at x. We show that the asymptotic behaviour of u(x,t)...

Exact boundary observability for quasilinear hyperbolic systems

Tatsien Li (2008)

ESAIM: Control, Optimisation and Calculus of Variations

By means of a direct and constructive method based on the theory of semi-global C1 solution, the local exact boundary observability is established for one-dimensional first order quasilinear hyperbolic systems with general nonlinear boundary conditions. An implicit duality between the exact boundary controllability and the exact boundary observability is then shown in the quasilinear case.

Currently displaying 41 – 60 of 149