The search session has expired. Please query the service again.

Displaying 2361 – 2380 of 4762

Showing per page

Mesures invariantes ergodiques pour des produits gauches

Albert Raugi (2007)

Bulletin de la Société Mathématique de France

Soit ( X , 𝔛 ) un espace mesurable muni d’une transformation bijective bi-mesurable τ . Soit ϕ une application mesurable de X dans un groupe localement compact à base dénombrable G . Nous notons τ ϕ l’extension de τ , induite par ϕ , au produit X × G . Nous donnons une description des mesures positives τ ϕ -invariantes et ergodiques. Nous obtenons aussi une généralisation du théorème de réduction cohomologique de O.Sarig [5] à un groupe LCD quelconque.

Mesures invariantes pour les fractions rationnelles géométriquement finies

Guillaume Havard (1999)

Fundamenta Mathematicae

Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if p ( T ) + 1 p ( T ) δ > 2 . Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.

Metastability in the Furstenberg-Zimmer tower

Jeremy Avigad, Henry Towsner (2010)

Fundamenta Mathematicae

According to the Furstenberg-Zimmer structure theorem, every measure-preserving system has a maximal distal factor, and is weak mixing relative to that factor. Furstenberg and Katznelson used this structural analysis of measure-preserving systems to provide a perspicuous proof of Szemerédi’s theorem. Beleznay and Foreman showed that, in general, the transfinite construction of the maximal distal factor of a separable measure-preserving system can extend arbitrarily far into the countable ordinals....

Méthodes de changement d’échelles en analyse complexe

François Berteloot (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous mettons en perspective différentes méthodes de changement d’échelles et illustrons leur pertinence en mettant sur pieds des preuves simples et élémentaires de plusieurs théorèmes biens connus en analyse ou géométrie complexe. Les situations abordées sont variées et la plupart des théorèmes démontrés sont des classiques initialement obtenus entre la fin du xixe  et la seconde moitié du xxe  siècle.

Metric Entropy of Nonautonomous Dynamical Systems

Christoph Kawan (2014)

Nonautonomous Dynamical Systems

We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn, μn) of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the classical notion...

Minimal actions of homeomorphism groups

Yonatan Gutman (2008)

Fundamenta Mathematicae

Let X be a closed manifold of dimension 2 or higher or the Hilbert cube. Following Uspenskij one can consider the action of Homeo(X) equipped with the compact-open topology on Φ 2 2 X , the space of maximal chains in 2 X , equipped with the Vietoris topology. We show that if one restricts the action to M ⊂ Φ, the space of maximal chains of continua, then the action is minimal but not transitive. Thus one shows that the action of Homeo(X) on U H o m e o ( X ) , the universal minimal space of Homeo(X), is not transitive (improving...

Currently displaying 2361 – 2380 of 4762