Displaying 2381 – 2400 of 4762

Showing per page

Minimal models for d -actions

Bartosz Frej, Agata Kwaśnicka (2008)

Colloquium Mathematicae

We prove that on a metrizable, compact, zero-dimensional space every d -action with no periodic points is measurably isomorphic to a minimal d -action with the same, i.e. affinely homeomorphic, simplex of measures.

Minimal nonhomogeneous continua

Henk Bruin, Sergiǐ Kolyada, L'ubomír Snoha (2003)

Colloquium Mathematicae

We show that there are (1) nonhomogeneous metric continua that admit minimal noninvertible maps but have the fixed point property for homeomorphisms, and (2) nonhomogeneous metric continua that admit both minimal noninvertible maps and minimal homeomorphisms. The former continua are constructed as quotient spaces of the torus or as subsets of the torus, the latter are constructed as subsets of the torus.

Minimal non-invertible transformations of solenoids

Dariusz Tywoniuk (2012)

Colloquium Mathematicae

We construct a continuous non-invertible minimal transformation of an arbitrary solenoid. Since solenoids, as all other compact monothetic groups, also admit minimal homeomorphisms, our result allows one to classify solenoids among continua admitting both invertible and non-invertible continuous minimal maps.

Minimal number of periodic points for smooth self-maps of S³

Grzegorz Graff, Jerzy Jezierski (2009)

Fundamenta Mathematicae

Let f be a continuous self-map of a smooth compact connected and simply-connected manifold of dimension m ≥ 3 and r a fixed natural number. A topological invariant D r m [ f ] , introduced by the authors [Forum Math. 21 (2009)], is equal to the minimal number of r-periodic points for all smooth maps homotopic to f. In this paper we calculate D ³ r [ f ] for all self-maps of S³.

Minimal periods of maps of rational exterior spaces

Grzegorz Graff (2000)

Fundamenta Mathematicae

The problem of description of the set Per(f) of all minimal periods of a self-map f:X → X is studied. If X is a rational exterior space (e.g. a compact Lie group) then there exists a description of the set of minimal periods analogous to that for a torus map given by Jiang and Llibre. Our approach is based on the Haibao formula for the Lefschetz number of a self-map of a rational exterior space.

Minimal, rigid foliations by curves on n

Frank Loray, Julio C. Rebelo (2003)

Journal of the European Mathematical Society

We prove the existence of minimal and rigid singular holomorphic foliations by curves on the projective space n for every dimension n 2 and every degree d 2 . Precisely, we construct a foliation which is induced by a homogeneous vector field of degree d , has a finite singular set and all the regular leaves are dense in the whole of n . Moreover, satisfies many additional properties expected from chaotic dynamics and is rigid in the following sense: if is conjugate to another holomorphic foliation...

Minimal sets of generalized dynamical systems

Basilio Messano, Antonio Zitarosa (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We introduce generalized dynamical systems (including both dynamical systems and discrete dynamical systems) and give the notion of minimal set of a generalized dynamical system. Then we prove a generalization of the classical G.D. Birkhoff theorem about minimal sets of a dynamical system and some propositions about generalized discrete dynamical systems.

Minimal sets of non-resonant torus homeomorphisms

Ferry Kwakkel (2011)

Fundamenta Mathematicae

As was known to H. Poincaré, an orientation preserving circle homeomorphism without periodic points is either minimal or has no dense orbits, and every orbit accumulates on the unique minimal set. In the first case the minimal set is the circle, in the latter case a Cantor set. In this paper we study a two-dimensional analogue of this classical result: we classify the minimal sets of non-resonant torus homeomorphisms, that is, torus homeomorphisms isotopic to the identity for which the rotation...

Minimal systems and distributionally scrambled sets

Piotr Oprocha (2012)

Bulletin de la Société Mathématique de France

In this paper we investigate numerous constructions of minimal systems from the point of view of ( 1 , 2 ) -chaos (but most of our results concern the particular cases of distributional chaos of type 1 and 2 ). We consider standard classes of systems, such as Toeplitz flows, Grillenberger K -systems or Blanchard-Kwiatkowski extensions of the Chacón flow, proving that all of them are DC2. An example of DC1 minimal system with positive topological entropy is also introduced. The above mentioned results answer...

Minimal tori in S4.

U. Pinkall, D. Ferus, I. Sterling (1992)

Journal für die reine und angewandte Mathematik

Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers

Grzegorz Graff, Agnieszka Kaczkowska (2012)

Open Mathematics

Let f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math. (in press)] the topological invariant J[f] which is equal to the...

Currently displaying 2381 – 2400 of 4762