Displaying 101 – 120 of 557

Showing per page

A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach

Sébastien Breteaux (2014)

Annales de l’institut Fourier

In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

A global analysis of Newton iterations for determining turning points

Vladimír Janovský, Viktor Seige (1993)

Applications of Mathematics

The global convergence of a direct method for determining turning (limit) points of a parameter-dependent mapping is analysed. It is assumed that the relevant extended system has a singular root for a special parameter value. The singular root is clasified as a b i f u r c a t i o n s i n g u l a r i t y (i.e., as a d e g e n e r a t e turning point). Then, the Theorz for Imperfect Bifurcation offers a particular scenario for the split of the singular root into a finite number of regular roots (turning points) due to a given parameter imperfection. The relationship...

A gradient inequality at infinity for tame functions.

Didier D'Acunto, Vincent Grandjean (2005)

Revista Matemática Complutense

Let f be a C1 function defined over Rn and definable in a given o-minimal structure M expanding the real field. We prove here a gradient-like inequality at infinity in a neighborhood of an asymptotic critical value c. When f is C2 we use this inequality to discuss the trivialization by the gradient flow of f in a neighborhood of a regular asymptotic critical level.

A graph approach to computing nondeterminacy in substitutional dynamical systems

Toke M. Carlsen, Søren Eilers (2007)

RAIRO - Theoretical Informatics and Applications

We present an algorithm which for any aperiodic and primitive substitution outputs a finite representation of each special word in the shift space associated to that substitution, and determines when such representations are equivalent under orbit and shift tail equivalence. The algorithm has been implemented and applied in the study of certain new invariants for flow equivalence of substitutional dynamical systems.

A holomorphic correspondence at the boundary of the Klein combination locus

Shaun Bullett, Andrew Curtis (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

We investigate an explicit holomorphic correspondence on the Riemann sphere with striking dynamical behaviour: the limit set is a fractal resembling the one-skeleton of a tetrahedron and on each component of the complement of this set the correspondence behaves like a Fuchsian group.

A joint limit theorem for compactly regenerative ergodic transformations

David Kocheim, Roland Zweimüller (2011)

Studia Mathematica

We study conservative ergodic infinite measure preserving transformations satisfying a compact regeneration property introduced by the second-named author in J. Anal. Math. 103 (2007). Assuming regular variation of the wandering rate, we clarify the asymptotic distributional behaviour of the random vector (Zₙ,Sₙ), where Zₙ and Sₙ are respectively the time of the last visit before time n to, and the occupation time of, a suitable set Y of finite measure.

A KAM phenomenon for singular holomorphic vector fields

Laurent Stolovitch (2005)

Publications Mathématiques de l'IHÉS

Let X be a germ of holomorphic vector field at the origin of Cn and vanishing there. We assume that X is a good perturbation of a “nondegenerate” singular completely integrable system. The latter is associated to a family of linear diagonal vector fields which is assumed to have nontrivial polynomial first integrals (they are generated by the so called “resonant monomials”). We show that X admits many invariant analytic subsets in a neighborhood of the origin. These are biholomorphic to the intersection...

Currently displaying 101 – 120 of 557