Displaying 421 – 440 of 791

Showing per page

Mod 2 normal numbers and skew products

Geon Ho Choe, Toshihiro Hamachi, Hitoshi Nakada (2004)

Studia Mathematica

Let E be an interval in the unit interval [0,1). For each x ∈ [0,1) define dₙ(x) ∈ 0,1 by d ( x ) : = i = 1 n 1 E ( 2 i - 1 x ) ( m o d 2 ) , where t is the fractional part of t. Then x is called a normal number mod 2 with respect to E if N - 1 n = 1 N d ( x ) converges to 1/2. It is shown that for any interval E ≠(1/6, 5/6) a.e. x is a normal number mod 2 with respect to E. For E = (1/6, 5/6) it is proved that N - 1 n = 1 N d ( x ) converges a.e. and the limit equals 1/3 or 2/3 depending on x.

Moving averages

S. V. Butler, J. M. Rosenblatt (2008)

Colloquium Mathematicae

In ergodic theory, certain sequences of averages A k f may not converge almost everywhere for all f ∈ L¹(X), but a sufficiently rapidly growing subsequence A m k f of these averages will be well behaved for all f. The order of growth of this subsequence that is sufficient is often hyperexponential, but not necessarily so. For example, if the averages are A k f ( x ) = 1 / ( 2 k ) j = 4 k + 1 4 k + 2 k f ( T j x ) , then the subsequence A k ² f will not be pointwise good even on L , but the subsequence A 2 k f will be pointwise good on L¹. Understanding when the hyperexponential...

Moyennes harmoniques

Fernando Alcalde Cuesta (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous introduisons une notion de moyenne harmonique pour une marche aléatoire sur une relation d’équivalence mesurée graphée, qui généralise la notion classique de moyenne invariante. Pour les graphages à géométrie bornée, une telle moyenne existe toujours. Nous prouvons qu’une moyenne harmonique devient invariante lorsque la marche aléatoire sur presque toute orbite jouit de bonnes propriétés asymptotiques telles que la propriété de Liouville ou la récurrence.

Multiparameter ergodic Cesàro-α averages

A. L. Bernardis, R. Crescimbeni, C. Ferrari Freire (2015)

Colloquium Mathematicae

Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on L p ( ν ) , T , . . . , T k , n ̅ = ( n , . . . , n k ) k and α ̅ = ( α , . . . , α k ) with 0 < α j 1 , we define the ergodic Cesàro-α̅ averages n ̅ , α ̅ f = 1 / ( j = 1 k A n j α j ) i k = 0 n k i = 0 n j = 1 k A n j - i j α j - 1 T k i k T i f . For these averages we prove the almost everywhere convergence on X and the convergence in the L p ( ν ) norm, when n , . . . , n k independently, for all f L p ( d ν ) with p > 1/α⁎ where α = m i n 1 j k α j . In the limit case p = 1/α⁎, we prove that the averages n ̅ , α ̅ f converge almost everywhere on X for all f in the Orlicz-Lorentz space Λ ( 1 / α , φ m - 1 ) with φ ( t ) = t ( 1 + l o g t ) m . To obtain the result in the limit case we need to study...

New spectral multiplicities for ergodic actions

Anton V. Solomko (2012)

Studia Mathematica

Let G be a locally compact second countable Abelian group. Given a measure preserving action T of G on a standard probability space (X,μ), let ℳ (T) denote the set of essential values of the spectral multiplicity function of the Koopman representation U T of G defined in L²(X,μ) ⊖ ℂ by U T ( g ) f : = f T - g . If G is either a discrete countable Abelian group or ℝⁿ, n ≥ 1, it is shown that the sets of the form p,q,pq, p,q,r,pq,pr,qr,pqr etc. or any multiplicative (and additive) subsemigroup of ℕ are realizable as ℳ (T)...

Nombres de Betti L 2 et facteurs de type II 1

Alain Connes (2002/2003)

Séminaire Bourbaki

Damien Gaboriau a montré récemment que les nombres de Betti L 2 des feuilletages mesurés à feuilles contractiles sont des invariants de la relation d’équivalence associée. Sorin Popa a utilisé ce résultat joint à des propriétés de rigidité des facteurs de type II 1 pour en déduire l’existence de facteurs de type II 1 dont le groupe fondamental est trivial.

Non-orbit equivalent actions of 𝔽 n

Adrian Ioana (2009)

Annales scientifiques de l'École Normale Supérieure

For any 2 n , we construct a concrete 1-parameter family of non-orbit equivalent actions of the free group 𝔽 n . These actions arise as diagonal products between a generalized Bernoulli action and the action 𝔽 n ( 𝕋 2 , λ 2 ) , where 𝔽 n is seen as a subgroup of SL 2 ( ) .

Norm convergence of some power series of operators in L p with applications in ergodic theory

Christophe Cuny (2010)

Studia Mathematica

Let X be a closed subspace of L p ( μ ) , where μ is an arbitrary measure and 1 < p < ∞. Let U be an invertible operator on X such that s u p n | | U | | < . Motivated by applications in ergodic theory, we obtain (optimal) conditions for the convergence of series like n 1 ( U f ) / n 1 - α , 0 ≤ α < 1, in terms of | | f + + U n - 1 f | | p , generalizing results for unitary (or normal) operators in L²(μ). The proofs make use of the spectral integration initiated by Berkson and Gillespie and, more particularly, of results from a paper by Berkson-Bourgain-Gillespie....

Normal points for generic hyperbolic maps

Mark Pollicott (2009)

Fundamenta Mathematicae

We consider families of hyperbolic maps and describe conditions for a fixed reference point to have its orbit evenly distributed for maps corresponding to generic parameter values.

Note on the isomorphism problem for weighted unitary operators associated with a nonsingular automorphism

K. Frączek, M. Wysokińska (2008)

Colloquium Mathematicae

We give a negative answer to a question put by Nadkarni: Let S be an ergodic, conservative and nonsingular automorphism on ( X ̃ , X ̃ , m ) . Consider the associated unitary operators on L ² ( X ̃ , X ̃ , m ) given by U ̃ S f = ( d ( m S ) / d m ) · ( f S ) and φ · U ̃ S , where φ is a cocycle of modulus one. Does spectral isomorphism of these two operators imply that φ is a coboundary? To answer it negatively, we give an example which arises from an infinite measure-preserving transformation with countable Lebesgue spectrum.

Currently displaying 421 – 440 of 791