Coverings of foliations anf associated C*-algebras.
Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe . Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.
Si deux systèmes dynamiques de dimension 1 et de classe sont -conjugués, dans quelles conditions sont-ils -conjugués ? Par “système dynamique de dimension 1”, nous entendons ici un feuilletage de codimension 1 ou une application du cercle dans lui-même. Nous donnons des conditions très faibles pour que la réponse à la question précédente soit positive.
Dans cet article, nous étudions la dynamique des échanges d’intervalles affines dont les pentes sont des puissances d’un même entier et dont les coupures et leurs images sont des rationnels. Nous montrons qu’une telle application a une dynamique très simple : toutes ses orbites sont propres et elle possède au moins une orbite périodique ou un cycle périodique. Comme corollaire de ce résultat, nous montrons que les éléments de distortion dans les groupes de Higman-Thompson sont ceux d’ordre...
Dans cet article, on montre que, dans le groupe des difféomorphismes isotopes à l’identité d’une variété compacte , tout élément récurrent est de distorsion. Pour ce faire, on généralise une méthode de démonstration utilisée par Avila pour le cas de . La méthode nous permet de retrouver un résultat de Calegari et Freedman selon lequel tout homéomorphisme de la sphère isotope à l’identité est un élément de distorsion.
Soit une variété de Seifert de groupe fondamental non virtuellement résoluble. Soit un feuilletage de dimension sur , muni d’une structure projective réelle transverse. On suppose que satisfait la propriété de relèvement des chemins, i.e., que l’espace des feuilles du relèvement de dans le revêtement universel de est séparé au sens de Hausdorff. On montre qu’à revêtements finis près, est soit une fibration projective, soit un feuilletage géodésique convexe, soit un feuilletage horocyclique...