Displaying 41 – 60 of 108

Showing per page

A topological characterization of holomorphic parabolic germs in the plane

Frédéric Le Roux (2008)

Fundamenta Mathematicae

J.-M. Gambaudo and É. Pécou introduced the "linking property" in the study of the dynamics of germs of planar homeomorphisms in order to provide a new proof of Naishul's theorem. In this paper we prove that the negation of the Gambaudo-Pécou property characterizes the topological dynamics of holomorphic parabolic germs. As a consequence, a rotation set for germs of surface homeomorphisms around a fixed point can be defined, and it turns out to be non-trivial except for countably many conjugacy classes....

A version of non-Hamiltonian Liouville equation

Celina Rom (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we give a version of the theorem on local integral invariants of systems of ordinary differential equations. We give, as an immediate conclusion of this theorem, a condition which guarantees existence of an invariant measure of local dynamical systems. Results of this type lead to the Liouville equation and have been frequently proved under various assumptions. Our method of the proof is simpler and more direct.

Absolute continuity, Lyapunov exponents and rigidity I: geodesic flows

Artur Avila, Marcelo Viana, Amie Wilkinson (2015)

Journal of the European Mathematical Society

We consider volume-preserving perturbations of the time-one map of the geodesic flow of a compact surface with negative curvature. We show that if the Liouville measure has Lebesgue disintegration along the center foliation then the perturbation is itself the time-one map of a smooth volume-preserving flow, and that otherwise the disintegration is necessarily atomic.

Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps

Feliks Przytycki (1994)

Fundamenta Mathematicae

We prove that if A is the basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, if A is completely invariant (i.e. f - 1 ( A ) = A ), and if μ is an arbitrary f-invariant measure with positive Lyapunov exponents on ∂A, then μ-almost every point q ∈ ∂A is accessible along a curve from A. In fact, we prove the accessibility of every “good” q, i.e. one for which “small neigh bourhoods arrive at large scale” under iteration of f. This generalizes the...

Actions localement libres de groupes résolubles

Michel Belliart, Olivier Birembaux (1994)

Annales de l'institut Fourier

Soient G un groupe de Lie connexe de dimension n - 1 , Φ une action localement libre de classe C r ( r 2 ) de G sur une variété compacte M de dimension n 3 . Nous supposons qu’il existe dans l’algèbre de Lie de G un champ Y tel que les valeurs propres de ad ( Y ) soient α 1 , ... , α n - 2 , 0 avec Re ( α i ) < 0 i . Alors, nous montrons que Φ est C r -conjuguée à une “action modèle" de G sur un espace homogène H / Γ H est un groupe de Lie contenant G . Si n 4 , H est uniquement déterminé par G ; si n = 3 , il y a deux groupes H possibles, et nous pouvons donc donner une...

Currently displaying 41 – 60 of 108