Displaying 61 – 80 of 108

Showing per page

All solenoids of piecewise smooth maps are period doubling

Lluís Alsedà, Víctor Jiménez López, L’ubomír Snoha (1998)

Fundamenta Mathematicae

We show that piecewise smooth maps with a finite number of pieces of monotonicity and nowhere vanishing Lipschitz continuous derivative can have only period doubling solenoids. The proof is based on the fact that if p 1 < . . . < p n is a periodic orbit of a continuous map f then there is a union set q 1 , . . . , q n - 1 of some periodic orbits of f such that p i < q i < p i + 1 for any i.

An analogue of the Variational Principle for group and pseudogroup actions

Andrzej Biś (2013)

Annales de l’institut Fourier

We generalize to the case of finitely generated groups of homeomorphisms the notion of a local measure entropy introduced by Brin and Katok [7] for a single map. We apply the theory of dimensional type characteristics of a dynamical system elaborated by Pesin [25] to obtain a relationship between the topological entropy of a pseudogroup and a group of homeomorphisms of a metric space, defined by Ghys, Langevin and Walczak in [12], and its local measure entropies. We prove an analogue of the Variational...

An elementary proof of a Lima's theorem for surfaces.

Francisco Javier Turiel Sandín (1989)

Publicacions Matemàtiques

An elementary proof of the following theorem is given:THEOREM. Let M be a compact connected surface without boundary. Consider a C∞ action of Rn on M. Then, if the Euler-Poincaré characteristic of M is non zero there exists a fixed point.

An L q ( L ² ) -theory of the generalized Stokes resolvent system in infinite cylinders

Reinhard Farwig, Myong-Hwan Ri (2007)

Studia Mathematica

Estimates of the generalized Stokes resolvent system, i.e. with prescribed divergence, in an infinite cylinder Ω = Σ × ℝ with Σ n - 1 , a bounded domain of class C 1 , 1 , are obtained in the space L q ( ; L ² ( Σ ) ) , q ∈ (1,∞). As a preparation, spectral decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theorem is proved using the techniques of Schauder decompositions, operator-valued multiplier functions and R-boundedness of operator families.

An ordered structure of rank two related to Dulac's Problem

A. Dolich, P. Speissegger (2008)

Fundamenta Mathematicae

For a vector field ξ on ℝ² we construct, under certain assumptions on ξ, an ordered model-theoretic structure associated to the flow of ξ. We do this in such a way that the set of all limit cycles of ξ is represented by a definable set. This allows us to give two restatements of Dulac’s Problem for ξ - that is, the question whether ξ has finitely many limit cycles-in model-theoretic terms, one involving the recently developed notion of U þ -rank and the other involving the notion of o-minimality.

Analysis of an on-off intermittency system with adjustable state levels

Shi-Jian Cang, Zeng-Qiang Chen, Zhu Zhi Yuan (2008)

Kybernetika

We consider a chaotic system with a double-scroll attractor proposed by Elwakil, composing with a second-order system, which has low-dimensional multiple invariant subspaces and multi-level on-off intermittency. This type of composite system always includes a skew-product structure and some invariant subspaces, which are associated with different levels of laminar phase. In order for the level of laminar phase be adjustable, we adopt a nonlinear function with saturation characteristic to tune the...

Analytic invariants for the 1 : - 1 resonance

José Pedro Gaivão (2013)

Annales de l’institut Fourier

Associated to analytic Hamiltonian vector fields in 4 having an equilibrium point satisfying a non semisimple 1 : - 1 resonance, we construct two constants that are invariant with respect to local analytic symplectic changes of coordinates. These invariants vanish when the Hamiltonian is integrable. We also prove that one of these invariants does not vanish on an open and dense set.

Analytic torsions on contact manifolds

Michel Rumin, Neil Seshadri (2012)

Annales de l’institut Fourier

We propose a definition for analytic torsion of the contact complex on contact manifolds. We show it coincides with Ray–Singer torsion on any 3 -dimensional CR Seifert manifold equipped with a unitary representation. In this particular case we compute it and relate it to dynamical properties of the Reeb flow. In fact the whole spectral torsion function we consider may be interpreted on CR Seifert manifolds as a purely dynamical function through Selberg-like trace formulae, that hold also in variable...

Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms

Viviane Baladi, Masato Tsujii (2007)

Annales de l’institut Fourier

We study spectral properties of transfer operators for diffeomorphisms T : X X on a Riemannian manifold X . Suppose that Ω is an isolated hyperbolic subset for T , with a compact isolating neighborhood V X . We first introduce Banach spaces of distributions supported on V , which are anisotropic versions of the usual space of C p functions C p ( V ) and of the generalized Sobolev spaces W p , t ( V ) , respectively. We then show that the transfer operators associated to  T and a smooth weight g extend boundedly to these spaces, and...

Applications of Nielsen theory to dynamics

Boju Jiang (1999)

Banach Center Publications

In this talk, we shall look at the application of Nielsen theory to certain questions concerning the "homotopy minimum" or "homotopy stability" of periodic orbits under deformations of the dynamical system. These applications are mainly to the dynamics of surface homeomorphisms, where the geometry and algebra involved are both accessible.

Currently displaying 61 – 80 of 108