Displaying 141 – 160 of 952

Showing per page

Central limit theorem for sampled sums of dependent random variables

Nadine Guillotin-Plantard, Clémentine Prieur (2010)

ESAIM: Probability and Statistics

We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application to parametric estimation by random sampling is also provided.

Centralisateurs des difféomorphismes de la demi-droite

Hélène Eynard-Bontemps (2008/2009)

Séminaire de théorie spectrale et géométrie

Soit f un difféomorphisme lisse de + fixant seulement l’origine, et 𝒵 r son centralisateur dans le groupe des difféomorphismes 𝒞 r . Des résultat classiques de Kopell et Szekeres montrent que 𝒵 1 est toujours un groupe à un paramètre. En revanche, Sergeraert a construit un f dont le centralisateur 𝒵 est réduit au groupe des itérés de f . On présente ici le résultat principal de [3] : 𝒵 peut en fait être un sous-groupe propre et non-dénombrable (donc dense) de 𝒵 1 .

Chaos in some planar nonautonomous polynomial differential equation

Klaudiusz Wójcik (2000)

Annales Polonici Mathematici

We show that under some assumptions on the function f the system ż = z ̅ ( f ( z ) e i ϕ t + e i 2 ϕ t ) generates chaotic dynamics for sufficiently small parameter ϕ. We use the topological method based on the Lefschetz fixed point theorem and the Ważewski retract theorem.

Chaos synchronization of a fractional nonautonomous system

Zakia Hammouch, Toufik Mekkaoui (2014)

Nonautonomous Dynamical Systems

In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.

Combinatoire du billard dans un polyèdre

Nicolas Bedaride (2006/2007)

Séminaire de théorie spectrale et géométrie

Ces notes ont pour but de rassembler les différents résultats de combinatoire des mots relatifs au billard polygonal et polyédral. On commence par rappeler quelques notions de combinatoire, puis on définit le billard, les notions utiles en dynamique et le codage de l’application. On énonce alors les résultats connus en dimension deux puis trois.

Commutators of flows and fields

Markus Mauhart, Peter W. Michor (1992)

Archivum Mathematicum

The well known formula [ X , Y ] = 1 2 2 t 2 | 0 ( - t Y ø - t X ø t Y ø t X ) for vector fields X , Y is generalized to arbitrary bracket expressions and arbitrary curves of local diffeomorphisms.

Currently displaying 141 – 160 of 952