Entropies des flots magnétiques
We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure for the geodesic flow is bounded from below by half of the Ruelle upper bound. (This text has been written for the proceedings of the Journées EDP (Port d’Albret-June, 7-11 2010))
A unified introduction to the dynamics of interval exchange maps and related topics, such as the geometry of translation surfaces, renormalization operators, and Teichmüller flows, starting from the basic definitions and culminating with the proof that almost every interval exchange map is uniquely ergodic. Great emphasis is put on examples and geometric interpretations of the main ideas.
We construct an explicit family of arithmetic Teichmüller curves , , supporting -invariant probabilities such that the associated -representation on has complementary series for every . Actually, the size of the spectral gap along this family goes to zero. In particular, the Teichmüller geodesic flow restricted to these explicit arithmetic Teichmüller curves has arbitrarily slow rate of exponential mixing.
We study the dynamics of the Teichmüller flow in the moduli space of abelian differentials (and more generally, its restriction to any connected component of a stratum). We show that the (Masur-Veech) absolutely continuous invariant probability measure is exponentially mixing for the class of Hölder observables. A geometric consequence is that the action in the moduli space has a spectral gap.