On small stochastic perturbations of mappings of the unit interval
In this paper, a modified version of the Chaos Shift Keying (CSK) scheme for secure encryption and decryption of data will be discussed. The classical CSK method determines the correct value of binary signal through checking which initially unsynchronized system is getting synchronized. On the contrary, the new anti-synchronization CSK (ACSK) scheme determines the wrong value of binary signal through checking which already synchronized system is loosing synchronization. The ACSK scheme is implemented...
Given d ≥ 2 consider the family of polynomials for c ∈ ℂ. Denote by the Julia set of and let be the connectedness locus; for d = 2 it is called the Mandelbrot set. We study semihyperbolic parameters : those for which the critical point 0 is not recurrent by and without parabolic cycles. The Hausdorff dimension of , denoted by , does not depend continuously on c at such ; on the other hand the function is analytic in . Our first result asserts that there is still some continuity...
Consider the domain and let the free path length be defined as In the Boltzmann-Grad scaling corresponding to , it is shown that the limiting distribution of is bounded from below by an expression of the form C/t, for some C> 0. A numerical study seems to indicate that asymptotically for large t, . This is an extension of a previous work [J. Bourgain et al., Comm. Math. Phys.190 (1998) 491-508]. As a consequence, it is proved that the linear Boltzmann type transport equation is inappropriate...
Consider the region obtained by removing from the discs of radius , centered at the points of integer coordinates with . We are interested in the distribution of the free path length (exit time) of a point particle, moving from along a linear trajectory of direction , as . For every integer number , we prove the weak convergence of the probability measures associated with the random variables , explicitly computing the limiting distribution. For , respectively , this result leads...
A planar polygonal billiard is said to have the finite blocking property if for every pair of points in there exists a finite number of “blocking” points such that every billiard trajectory from to meets one of the ’s. Generalizing our construction of a counter-example to a theorem of Hiemer and Snurnikov, we show that the only regular polygons that have the finite blocking property are the square, the equilateral triangle and the hexagon. Then we extend this result to translation surfaces....
We give an alternative proof of the stable manifold theorem as an application of the (right and left) inverse mapping theorem on a space of sequences. We investigate the diffeomorphism class of the global stable manifold, a problem which in the general Banach setting gives rise to subtle questions about the possibility of extending germs of diffeomorphisms.