Topological properties of a rotation function in the integrable Jacobi problem for geodesics on ellipsoids
A continuous map of the interval is chaotic iff there is an increasing sequence of nonnegative integers such that the topological sequence entropy of relative to , , is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers there is a chaotic map of the interval such that ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact metric...
We prove that for continuous interval maps the existence of a non-empty closed invariant subset which is transitive and sensitive to initial conditions is implied by positive topological entropy and implies chaos in the sense of Li-Yorke, and we exhibit examples showing that these three notions are distinct.
We consider transversely affine foliations without compact leaves of higher genus surface bundles over the circle of pseudo-Anosov type such that the Euler classes of the tangent bundles of the foliations coincide with that of the bundle foliation. We classify such foliations of those surface bundles whose monodromies satisfy a certain condition.
One-dimensional turbulent maps can be characterized via their ω-limit sets [1]. We give a direct proof of this characterization and get stronger results, which allows us to obtain some other results on ω-limit sets, which previously were difficult to prove.
Dans cet article, nous généralisons les résultats de Fusco et Oliva [8], qui ont montré la transversalité de l’intersection des variétés stable et instable associées à des orbites périodiques hyperboliques, pour un système dynamique de la forme (sur un ouvert de ) où est une matrice de Jacobi cyclique. Dans [8], cette propriété est obtenue en utilisant le nombre de changements de signe de qui est une fonctionnelle monotone le long des orbites. Tout d’abord, nous étendons ce résultat de transversalité...